Saltar a contenido
__HTML_TAG_152_ SciPy Commands

SciPy Cheatsheet

Instalación

Platform Command
Ubuntu/Debian INLINE_CODE_10 or INLINE_CODE_11
macOS INLINE_CODE_12 or INLINE_CODE_13
Windows INLINE_CODE_14 or INLINE_CODE_15 (recommended)
Conda (All platforms) INLINE_CODE_16 or INLINE_CODE_17
Virtual Environment INLINE_CODE_18
Specific Version INLINE_CODE_19
With Dependencies INLINE_CODE_20
Verify Installation INLINE_CODE_21

Comandos básicos

Importación y configuración

Command Description
INLINE_CODE_22 Import the SciPy library
INLINE_CODE_23 Import NumPy (required for SciPy)
INLINE_CODE_24 Import optimization module
INLINE_CODE_25 Import statistics module
INLINE_CODE_26 Import linear algebra module
INLINE_CODE_27 Check SciPy version
INLINE_CODE_28 Display SciPy configuration

Optimization Basics

__TABLE_160_

Integration

Command Description
INLINE_CODE_36 Integrate function from a to b
INLINE_CODE_37 Double integration
INLINE_CODE_38 Solve ordinary differential equations
INLINE_CODE_39 Modern ODE solver with events
INLINE_CODE_40 Trapezoidal rule integration
INLINE_CODE_41 Simpson's rule integration

Interpolation

Command Description
INLINE_CODE_42 1D interpolation function
INLINE_CODE_43 Cubic spline interpolation
INLINE_CODE_44 Interpolate scattered data
INLINE_CODE_45 Univariate spline approximation
INLINE_CODE_46 2D interpolation function

Statistics

__TABLE_163_

Algebra lineal

Command Description
INLINE_CODE_55 Solve linear system Ax = b
INLINE_CODE_56 Calculate matrix inverse
INLINE_CODE_57 Calculate determinant
INLINE_CODE_58 Compute eigenvalues and eigenvectors
INLINE_CODE_59 Singular value decomposition
INLINE_CODE_60 Least-squares solution
INLINE_CODE_61 Matrix or vector norm
INLINE_CODE_62 QR decomposition

Signal Processing

Command Description
INLINE_CODE_63 Butterworth filter design
INLINE_CODE_64 Zero-phase digital filtering
INLINE_CODE_65 Find peaks in signal
INLINE_CODE_66 Cross-correlation of signals
INLINE_CODE_67 Convolution of signals
INLINE_CODE_68 Compute spectrogram
INLINE_CODE_69 Resample signal to num samples

Sparse Matrices

Command Description
INLINE_CODE_70 Create compressed sparse row matrix
INLINE_CODE_71 Create compressed sparse column matrix
INLINE_CODE_72 Sparse identity matrix
INLINE_CODE_73 Construct sparse diagonal matrix
INLINE_CODE_74 Convert sparse to dense array
INLINE_CODE_75 Convert sparse to dense matrix

Advanced Usage

Optimización avanzada

Command Description
INLINE_CODE_76 Constrained optimization with bounds
INLINE_CODE_77 Global optimization using genetic algorithm
INLINE_CODE_78 Global optimization with basin-hopping
INLINE_CODE_79 Nonlinear least squares with bounds
INLINE_CODE_80 Optimization with analytical gradient
INLINE_CODE_81 Simplicial homology global optimization
INLINE_CODE_82 Dual annealing global optimization

Advanced Integration

Command Description
INLINE_CODE_83 ODE solver with event detection
INLINE_CODE_84 ODE with continuous solution
INLINE_CODE_85 N-dimensional integration
INLINE_CODE_86 ODE with Jacobian matrix
INLINE_CODE_87 Boundary value problem solver
INLINE_CODE_88 Integration with weight functions

Advanced Interpolation

Command Description
INLINE_CODE_89 Radial basis function interpolation
INLINE_CODE_90 B-spline basis functions
INLINE_CODE_91 Make interpolating B-spline
INLINE_CODE_92 Akima interpolation (smooth curves)
INLINE_CODE_93 PCHIP 1-D monotonic cubic interpolation
INLINE_CODE_94 Interpolation on regular grid

Advanced Statistics

Command Description
INLINE_CODE_95 Kernel density estimation
INLINE_CODE_96 Multivariate normal samples
INLINE_CODE_97 Bootstrap confidence intervals
INLINE_CODE_98 Anderson-Darling test
INLINE_CODE_99 Mann-Whitney U test
INLINE_CODE_100 Kruskal-Wallis H-test
INLINE_CODE_101 Wilcoxon signed-rank test
INLINE_CODE_102 Spearman rank correlation
INLINE_CODE_103 Linear regression analysis

Algebra lineal avanzada

Command Description
INLINE_CODE_104 Cholesky decomposition
INLINE_CODE_105 LU decomposition
INLINE_CODE_106 Schur decomposition
INLINE_CODE_107 Matrix exponential
INLINE_CODE_108 Matrix logarithm
INLINE_CODE_109 Matrix square root
INLINE_CODE_110 Solve triangular system
INLINE_CODE_111 Moore-Penrose pseudoinverse

Procesamiento avanzado de señales

__TABLE_172_

Advanced Sparse Operations

__TABLE_173_

Operaciones espaciales

Command Description
INLINE_CODE_126 Pairwise distances between observations
INLINE_CODE_127 Distance between two collections
INLINE_CODE_128 k-d tree for fast nearest neighbor
INLINE_CODE_129 Convex hull of points
INLINE_CODE_130 Delaunay triangulation
INLINE_CODE_131 Voronoi diagram
INLINE_CODE_132 Distance matrix computation

Image Processing

Command Description
INLINE_CODE_133 Gaussian smoothing filter
INLINE_CODE_134 Median filter for noise reduction
INLINE_CODE_135 Rotate image by angle
INLINE_CODE_136 Zoom image by factor
INLINE_CODE_137 Binary morphological erosion
INLINE_CODE_138 Binary morphological dilation
INLINE_CODE_139 Label connected components
INLINE_CODE_140 Sobel edge detection

Configuración

NumPy/SciPy Configuration

# Display build and configuration information
import scipy
scipy.show_config()

# Set NumPy print options (affects SciPy output)
import numpy as np
np.set_printoptions(precision=4, suppress=True, linewidth=100)

# Configure warning filters
import warnings
warnings.filterwarnings('ignore', category=RuntimeWarning)

Optimización Configuración

# Configure optimization options
from scipy.optimize import minimize

options = {
    'maxiter': 1000,      # Maximum iterations
    'disp': True,         # Display convergence messages
    'ftol': 1e-8,        # Function tolerance
    'gtol': 1e-8         # Gradient tolerance
}

result = minimize(func, x0, method='BFGS', options=options)

Integración Tolerancias

from scipy.integrate import quad, solve_ivp

# Configure integration accuracy
result, error = quad(func, a, b, 
                    epsabs=1e-10,  # Absolute error tolerance
                    epsrel=1e-10,  # Relative error tolerance
                    limit=100)     # Subdivision limit

# Configure ODE solver
sol = solve_ivp(func, t_span, y0,
               method='RK45',
               rtol=1e-6,      # Relative tolerance
               atol=1e-9,      # Absolute tolerance
               max_step=0.1)   # Maximum step size

Selección de Formato de Matrix

from scipy import sparse

# Choose format based on use case
# CSR: efficient row slicing, matrix-vector products
A_csr = sparse.csr_matrix(data)

# CSC: efficient column slicing, matrix-vector products
A_csc = sparse.csc_matrix(data)

# COO: efficient construction, conversion
A_coo = sparse.coo_matrix(data)

# LIL: efficient incremental construction
A_lil = sparse.lil_matrix((1000, 1000))

Random Number Generation

from scipy import stats
import numpy as np

# Set random seed for reproducibility
np.random.seed(42)

# Use RandomState for thread-safe operations
rng = np.random.RandomState(42)
data = stats.norm.rvs(loc=0, scale=1, size=1000, random_state=rng)

Common Use Cases

Use Case 1: Curve Fitting and Model Selection

import numpy as np
from scipy.optimize import curve_fit
from scipy import stats
import matplotlib.pyplot as plt

# Generate noisy data
x = np.linspace(0, 10, 100)
y_true = 2.5 * np.exp(-0.5 * x) + 1.0
y_noisy = y_true + 0.2 * np.random.normal(size=len(x))

# Define model
def exponential_model(x, a, b, c):
    return a * np.exp(-b * x) + c

# Fit curve
params, covariance = curve_fit(exponential_model, x, y_noisy)
y_fit = exponential_model(x, *params)

# Calculate R-squared
residuals = y_noisy - y_fit
ss_res = np.sum(residuals**2)
ss_tot = np.sum((y_noisy - np.mean(y_noisy))**2)
r_squared = 1 - (ss_res / ss_tot)

print(f"Parameters: a={params[0]:.3f}, b={params[1]:.3f}, c={params[2]:.3f}")
print(f"R-squared: {r_squared:.4f}")

Use Case 2: Signal Filtering and Analysis

import numpy as np
from scipy import signal
from scipy.fft import fft, fftfreq

# Create noisy signal
fs = 1000  # Sampling frequency
t = np.linspace(0, 1, fs)
clean_signal = np.sin(2 * np.pi * 50 * t) + np.sin(2 * np.pi * 120 * t)
noisy_signal = clean_signal + 0.5 * np.random.normal(size=len(t))

# Design and apply Butterworth filter
sos = signal.butter(10, 100, btype='low', fs=fs, output='sos')
filtered_signal = signal.sosfilt(sos, noisy_signal)

# Find peaks
peaks, properties = signal.find_peaks(filtered_signal, 
                                     height=0.5, 
                                     distance=20)

# Compute power spectral density
f, Pxx = signal.welch(filtered_signal, fs, nperseg=256)

print(f"Found {len(peaks)} peaks")
print(f"Dominant frequency: {f[np.argmax(Pxx)]:.2f} Hz")

Use Case 3: Statistical Hypothesis Testing

import numpy as np
from scipy import stats

# Generate two sample datasets
np.random.seed(42)
group1 = stats.norm.rvs(loc=100, scale=15, size=50)
group2 = stats.norm.rvs(loc=105, scale=15, size=50)

# Test for normality
_, p_norm1 = stats.shapiro(group1)
_, p_norm2 = stats.shapiro(group2)

# Test for equal variances
_, p_var = stats.levene(group1, group2)

# Perform appropriate t-test
if p_var > 0.05:
    # Equal variances
    t_stat, p_value = stats.ttest_ind(group1, group2)
    test_type = "Independent t-test (equal variances)"
else:
    # Unequal variances (Welch's t-test)
    t_stat, p_value = stats.ttest_ind(group1, group2, equal_var=False)
    test_type = "Welch's t-test (unequal variances)"

# Calculate effect size (Cohen's d)
pooled_std = np.sqrt((np.std(group1)**2 + np.std(group2)**2) / 2)
cohens_d = (np.mean(group1) - np.mean(group2)) / pooled_std

print(f"Test: {test_type}")
print(f"t-statistic: {t_stat:.4f}, p-value: {p_value:.4f}")
print(f"Cohen's d: {cohens_d:.4f}")

Use Case 4: Optimization with Constraints

import numpy as np
from scipy.optimize import minimize

# Portfolio optimization: maximize return, minimize risk
def portfolio_objective(weights, returns, cov_matrix, risk_aversion=1.0):
    portfolio_return = np.sum(returns * weights)
    portfolio_risk = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights)))
    return -(portfolio_return - risk_aversion * portfolio_risk)

# Sample data
n_assets = 4
returns = np.array([0.10, 0.12, 0.15, 0.08])
cov_matrix = np.array([[0.005, -0.001, 0.001, 0.000],
                       [-0.001, 0.008, 0.002, 0.001],
                       [0.001, 0.002, 0.012, 0.003],
                       [0.000, 0.001, 0.003, 0.004]])

# Constraints: weights sum to 1
constraints = {'type': 'eq', 'fun': lambda x: np.sum(x) - 1}

# Bounds: each weight between 0 and 1
bounds = tuple((0, 1) for _ in range(n_assets))

# Initial guess
x0 = np.array([1/n_assets] * n_assets)

# Optimize
result = minimize(portfolio_objective, x0, 
                 args=(returns, cov_matrix),
                 method='SLSQP',
                 bounds=bounds,
                 constraints=constraints)

optimal_weights = result.x
print("Optimal portfolio weights:")
for i, weight in enumerate(optimal_weights):
    print(f"Asset {i+1}: {weight*100:.2f}%")

Use Case 5: Image Processing Pipeline

import numpy as np
from scipy import ndimage
from scipy import signal

# Load or create image (grayscale)
image = np.random.rand(256, 256) * 255

# Step 1: Denoise with Gaussian filter
denoised = ndimage.gaussian_filter(image, sigma=2)

# Step 2: Edge detection
edges_x = ndimage.sobel(denoised, axis=0)
edges_y = ndimage.sobel(denoised, axis=1)
edges = np.hypot(edges_x, edges_y)

# Step 3: Threshold to create binary image
threshold = np.mean(edges) + np.std(edges)
binary = edges > threshold

# Step 4: Morphological operations
struct = ndimage.generate_binary_structure(2, 2)
cleaned = ndimage.binary_opening(binary, structure=struct)
cleaned = ndimage.binary_closing(cleaned, structure=struct)

# Step 5: Label connected components
labeled, num_features = ndimage.label(cleaned)

# Step 6: Calculate properties
sizes = ndimage.sum(cleaned, labeled, range(num_features + 1))
centers = ndimage.center_of_mass(cleaned, labeled, range(1, num_features + 1))

print(f"Found {num_features} objects")
print(f"Average object size: {np.mean(sizes[1:]):.2f} pixels")

Buenas prácticas

  • Elige el método adecuado: Seleccione algoritmos de optimización basados en características de problemas (basado en grado para funciones suaves, optimizadores globales para problemas multimodales)

  • Vectorize Operations: Use NumPy array operations instead of loops for better performance; Las funciones SciPy están optimizadas para los insumos de array

  • ¿Qué? Estabilidad**: Usar tolerancias apropiadas (rtol, atol) para la integración y optimización; ser consciente de los números de condición en las operaciones de álgebra lineal

  • **Mátricas de fuga* Para matrices grandes con muchos ceros, utilice formatos de matriz escasos (csr_matrix, csc_matrix) para guardar memoria y mejorar la velocidad de cálculo

  • Probar buenas ideas iniciales: Los algoritmos de optimización y determinación de raíces convergen más rápido con puntos de partida razonables; utilizar el conocimiento de dominio cuando sea posible

  • Utilizar los exámenes estadísticos apropiados: Verificar los supuestos (normalidad, igual diferencia) antes de aplicar pruebas paramétricas; utilizar alternativas no paramétricas cuando se violan las hipótesis

  • Set Random Seeds: Asegurar la reproducibilidad en algoritmos estocásticos estableciendo semillas aleatorias con np.random.seed() o utilizando objetos __INLINE_CODE_146_

  • Rendimiento del archivo: Uso %timeit_ en Jupyter o cProfile_ para identificar los cuellos de botella; considere Numba o Cython para secciones críticas si las funciones de SciPy son insuficientes

  • Mira Convergencia. Examinar siempre los resultados de optimización (INLINE_CODE_149__, __INLINE_CODE_150_) y errores de integración antes de confiar en las salidas

  • ** Unidades de documentos y escalas**: documentar claramente las unidades físicas y las escalas de datos; normalizar los datos cuando proceda para mejorar la estabilidad numérica